The NEW ENGLAND JOURNAL of MEDICINE

Perspective

The False Promise of Natural Gas

Philip J. Landrigan, M.D., Howard Frumkin, M.D., Dr.P.H., and Brita E. Lundberg, M.D.

Production of natural gas has grown by nearly 400% in the United States since 1950, and gas is now the country's second-largest energy source. The main driver of this increase has been

the wide-scale adoption of hydraulic fracturing ("fracking"). During the fracking process, large volumes of water, sand, and chemicals are injected deep underground at high pressure to fracture shale deposits and sand and coal beds to release trapped gas. The world's largest gas-transmission network — with more than 300,000 miles of interstate and intrastate transmission pipelines, 2.1 million miles of local distribution lines. and more than 1000 compressor stations — brings this gas to the market. The ready availability of gas has reduced dependence on coal and oil, enables the United States to ship gas overseas, and will make the country a net energy exporter by 2020.1 It has also made gas an important feedstock for the chemical, pesticide, and plasticsmanufacturing industries.

Natural gas, composed principally of methane, has been hailed as a clean "transition" fuel — a bridge from the coal and oil of the past to the clean energy sources of the future. This claim is partially true. Gas combustion produces only negligible quantities of sulfur dioxide, mercury, and particulates. It is thus less polluting than combustion of coal or oil, and this benefits health.² Gas combustion also generates less carbon dioxide per unit of energy than combustion of coal or oil.

But beneath this rosy narrative lies a more complex story. Gas is associated with health and environmental hazards and reduced social welfare at every stage of its life cycle.² Fracking is linked to contamination of ground and surface water, air pollution, noise and light pollution, radiation releases, ecosystem damage, and earthquakes (see table). Transmission and storage of gas result in fires and explosions. The pipeline network is aging, inadequately maintained, and infrequently inspected. One or more pipeline explosions occur every year in the United States. In September 2018, a series of pipeline explosions in the Merrimack Vallev in Massachusetts caused more than 80 fires and explosions, damaged 131 homes, forced the evacuation of 30,000 people, injured 25 people, including two firefighters, and killed an 18-year-old boy. Gas compressor stations emit toxic and carcinogenic chemicals such as benzene, 1,3-butadiene, and formaldehyde. Wells, pipelines, and compressor stations are disproportionately located in low-income, minority, and marginalized communities, where they may leak gas, generate noise, endanger health, and contribute to environmental injustice while producing no local benefits. Gas combustion generates oxides of nitrogen that increase asthma risk

Health and Environmental Hazards of Natural Gas.*		
Category	Pathways and Mechanisms	Established and Potential Health Hazards
Local hazards		
Water contamination	Ground and surface water at gas wells is contami- nated with fracking chemicals.	Many fracking chemicals are toxic: 25% are carcino- gens; 75% are dermal, ocular, respiratory, and gas- trointestinal toxins; 40 to 50% have toxic nervous, immune, cardiovascular, and renal effects; 30 to 40% are endocrine disrupters
Air pollution	Heavy trucks, construction equipment, and drill rigs emit diesel exhaust, oxides of nitrogen, and particulates; sand piles release silica dust; gas venting and flaring produce volatile organic compounds (benzene, 1,3-butadiene, and form- aldehyde).	Exacerbation of asthma and COPD; increased risk of cardiovascular disease and diabetes; increased risk of prematurity and low birth weight; volatile organic compounds increase risk for leukemia and lym- phoma
Noise pollution	Heavy equipment and gas flaring generate nearly continuous noise; sound levels can reach 70 A-weighted decibels, which exceeds EPA com- munity guidelines.	Sleep disturbance; stress (associated with increased cardiovascular disease risk); cognitive deficits in children
Light pollution	High-intensity illumination and gas flaring generate bright light day and night	Sleep disturbance; stress
Radionuclide releases	Some shale formations contain naturally occurring radionuclides such as radon, principally in Pennsylvania and Texas.	Cancers, chiefly lung cancer
Earthquakes	Seismic activity is increased near fracking sites and up to 30 miles away.	Injuries; anxiety; loss of property value
Community disruption	Poor and minority communities are disproportion- ately exposed to noise, toxic chemicals, and ex- plosion hazards.	Mental health problems; substance abuse; sexually transmitted diseases
Regional hazards		
Fires and explosions	Pipeline explosions occur every year in the United States and recently occurred in Armada Township, MI; Refugio, TX; Salem, PA; Watford City, ND; and Merrimack Valley, MA.	Injury; death
Air pollution from gas combustion	Gas combustion in stoves, boilers, and furnaces generates oxides of nitrogen.	Increased asthma risk; exacerbation of COPD and car- diovascular disease
Global hazards		
Contributions to climate change	Use of natural gas causes methane leakage and gas combustion generates carbon dioxide.	Heat waves; extreme weather events; droughts; floods; wildfires; expanded ranges of vectorborne diseases; compromised food supplies resulting in famine, migration, conflict, and mental distress

* COPD denotes chronic obstructive pulmonary disease, and EPA Environmental Protection Agency. Sources of information are listed in the Supplementary Appendix, available at NEJM.org.

and aggravate chronic obstructive pulmonary disease.

Compounding these hazards are the grave dangers that gas extraction and use pose to the global climate.³ Gas is a much more powerful driver of climate change than is generally recognized. As much as 4% of all gas produced by fracking is lost to leakage, and these releases appear to have contributed to recent sharp increases in atmospheric methane.⁴ Methane is a potent contributor to global warming, with a heat-trapping potential 30 times greater than that of carbon dioxide over a 100-year span and 85 times greater over a 20-year span. Gas burned in stoves and boilers additionally contributes to global warming by generating carbon dioxide. Together, this evidence suggests that the purported advantage of gas over coal and oil has been greatly overstated.

Despite growing recognition of the dangers associated with gas and recent exponential increases in the production of electricity from renewables, new gas wells continue to be drilled and new pipelines built. The U.S. Energy Information Administration projects that daily natural-gas production in the United States will increase by 10 billion cubic feet in the next year and that under current federal policy, more electricity will be generated from gas than from renewables each year from now through 2050.1 This expansion of the gas infrastructure is supported by government subsidies and tax breaks that benefit the fossil-fuel industry and artificially depress gas prices. In 2016, federal subsidies for gas equaled \$32.6 billion, an amount 60 times greater than the \$533 million allocated to research and development related to solar energy.5 State subsidies provide additional support for fossil fuels.

As physicians deeply concerned about climate change and pollution and their consequences, we consider expansion of the naturalgas infrastructure to be a grave hazard to human health. All reasonable analyses indicate that we must leave nearly all remaining fossil fuels in the ground if we are to hold the extent of global warming below 1.5°C, the target set by the Intergovernmental Panel on Climate Change, and thus mitigate the health and environmental consequences of climate change.

A further argument against investment in gas is that it is economically reckless. Such investment ignores the reality that the cost of producing electricity from renewables is falling rapidly and that energy prices are approaching a "tipping point" after which it will become cheaper to generate electricity from solar and wind sources than from gas. The Energy Information Administration estimates that by 2023 it will cost \$36.60 per megawatt-hour to produce electricity from wind and \$37.60 to produce solar energy, versus \$40.20 to produce energy from gas. Any investment in gas is thus at risk of failing to yield an economic return and becoming a stranded asset. This risk could increase if federal subsidies for gas were to be cut.

We believe that investment in gas is also shortsighted. States that provide subsidies for gas and permit construction of new pipelines and compressor stations will lock in dependence on gas for years to come while missing opportunities to invest in renewables. The real problem with fracking, then, is that it perpetuates the carbon-based energy system and delays the transition to a carbonfree economy.

To address this problem, we recommend that state and federal subsidies for natural gas be reduced over the next 2 years and then eliminated. The International Monetary Fund has made similar recommendations. We also recommend that new residential or commercial gas hookups not be permitted, new gas appliances be removed from the market, further gas exploration on federal lands be banned, and all new or planned construction of gas infrastructure be halted. We believe an ill-conceived proposal announced recently by the Environmental Protection Agency to roll back limits on methane pollution needs to be blocked. At the same time, we call for the creation of new tax structures, subsidies, and incentives such as carbon pricing that favor wind, solar power, and other nonpolluting, renewable energy sources and policies that support energy conservation, clean vehicles, and expansion of public transit.

Implementation of these recommendations will require courageous political leadership and face fierce resistance. But widescale transition to renewables would yield enormous benefit for the United States. It would reduce air pollution and therefore prevent disease, extend life expectancy, and reduce health care costs. It would free up the billions of public dollars now spent on fossilfuel subsidies, and it would protect our planet.

Models exist for effective climate action. In July 2019, New York State enacted comprehensive energy and climate legislation and pledged to reduce greenhousegas emissions by 85% by 2050. To meet this target, New York is developing the country's largest wind farm and collaborating with Ireland and Denmark to improve its electric power grid. It has also created economic incentives for clean vehicles, including trucks and buses, and tax incentives for energy conservation. Idaho Power, the largest utility in a deeply conservative state, has pledged to produce 100% of its electricity from renewable sources by 2045. The United Kingdom has committed to net zero carbon emissions by 2050. New York, Idaho, and the United Kingdom are creating new, high-paying jobs in the wind and solar energy industries.

Natural gas has been portrayed as a bridge to the future. The data now show that it is only a tether to the past. We believe it's time to reject the false promise of gas.

Disclosure forms provided by the authors are available at NEJM.org.

From the Program in Global Public Health and the Common Good and the Global Ob-

servatory on Pollution and Health, Boston College, Chestnut Hill (P.J.L.) and Lundberg Health Advocates, Newton (B.E.L.) — both in Massachusetts; and the Wellcome Trust, London (H.F.).

This article was published on December 4, 2019, at NEJM.org.

1. Energy Information Administration. Annual energy outlook 2019: with projections to 2050. Washington, DC: Department of

Energy, January 2019 (https://www.eia.gov/ outlooks/aeo/pdf/aeo2019.pdf).

2. Saunders PJ, McCoy D, Goldstein R, Saunders AT, Munroe A. A review of the public health impacts of unconventional natural gas development. Environ Geochem Health 2018;40:1-57.

3. Intergovernmental Panel on Climate Change (IPCC). Global warming of 1.5°C: an IPCC special report. Geneva: World Meteorological Organization, 2018 (https://www.ipcc.ch/sr15/).

4. Howarth RW. Is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences 2019;16:3033-46.

5. Energy Information Administration. Direct federal financial interventions and subsidies in energy in fiscal year 2016. Washington, DC: Department of Energy, April 2018 (https://www.eia.gov/analysis/requests/ subsidy/pdf/subsidy.pdf).

DOI: 10.1056/NEJMp1913663

Copyright © 2019 Massachusetts Medical Society.